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Abstract: We study spontaneous chiral symmetry breaking and the spectral properties of

the staggered lattice Dirac operator using quenched gauge configurations for the exceptional

group G2, which has a trivial center. In particular we study the system below and above

the finite temperature transition and use the temporal boundary conditions of the fermions

to probe the system. We evaluate several observables: The spectral density at the origin,

the spectral gap, the chiral condensate and the recently proposed dual chiral condensate.

We show that chiral symmetry is broken at low temperatures and is restored at high

temperatures at the thermodynamic phase transition. Concerning the role of the boundary

conditions we establish that in all respects the spectral quantities behave for G2 in exactly

the same way as for SU(N), when for the latter group the gauge ensemble above Tc is

restricted to the sector of configurations with real Polyakov loop.
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1. Introductory remarks

Confinement of quarks and the breaking of chiral symmetry are two of the key features

of QCD. As the temperature is increased, QCD changes its behavior: Quarks become

deconfined and chiral symmetry is restored. It is a long standing question whether the two

phenomena and their changing behavior at the QCD finite temperature phase transition

are linked by some underlying mechanism.

The gauge groups usually considered in Yang-Mills theories are SU(N), in particular

SU(3). These groups have the non-trivial center groups ZN (and Z3, respectively). It has

been speculated that the center degrees of freedom play an important role for confinement

(see [1] and references therein), as well as for chiral symmetry breaking [2].

However, once dynamical fermions in the fundamental representation are introduced,

the center is explicitly broken, and confinement is no longer signaled by an infinitely rising

potential. Nonetheless, the chiral transition and the transition manifest in residual center

observables still coincide.

On the other hand, when the quarks are in the adjoint representation [3], the center

symmetry is still intact at low temperatures, and the finite temperature transition is sig-

naled by a change of center-sensitive observables, like the Polyakov loop, without affecting

qualitatively the breaking of chiral symmetry. Only at much larger temperature chiral

symmetry becomes restored.

In order to understand better the role of the center degrees of freedom for confinement,

in a series of papers [4]–[9] lattice QCD has been studied for the gauge group G2 where the
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center is trivial, i.e., consists of only the identity element. These papers were all motivated

by understanding various aspects of confinement. This is due to the fact that G2 Yang-

Mills theory has a place in between Yang-Mills theory, adjoint QCD and full QCD: It

exhibits a linear rising potential with Casimir scaling [9], which, however, flattens out at

large distances [4], as is the case in full QCD. Its bound state spectrum resembles adjoint

QCD, as gluons can screen quarks and thus permit color-neutral quark-gluon bound states

in addition to glueballs and hadrons [4]. Finally, it exhibits a first order phase transition, as

does SU(N) Yang-Mills theory [5 – 7]. Furthermore, gluonic correlators seem not to differ

qualitatively from the SU(N) case [8].

So far, however, essentially nothing is known about aspects of chiral symmetry and

its breaking for a center-trivial gauge group. In particular, due to its intermediate status

between the other three types of theory, it is a-priori unclear whether chiral symmetry

breaking is present at all at low temperature, or, if chiral symmetry is broken, whether the

chiral phase transition coincides with the thermodynamic one.

In our exploratory study we address for the quenched case the questions:

• Is chiral symmetry broken in the confining phase? (Yes!)

• Is chiral symmetry restored at high temperatures? (Yes!)

• Does chiral symmetry restoration take place at the same temperature where the

theory deconfines? (Yes!)

• How do the temporal boundary conditions of the Dirac operator influence the spectral

quantities and thus observables for chiral symmetry?

These questions can be formulated and answered in terms of spectral quantities of the

Dirac operator, in particular the density of eigenvalues near the origin or a possible spectral

gap, which appears above the critical temperature Tc. In our paper we analyze spectral

properties of the staggered lattice Dirac operator using quenched G2 gauge configurations

below and above Tc.

2. The role of temporal fermionic boundary conditions in SU(N)

When QCD at finite temperature is considered in the Euclidean path integral formalism

the time extent of space-time is finite. In such a setting the temporal boundary conditions

become a relevant issue. During recent years the role of the temporal fermion boundary

conditions was analyzed in several lattice QCD studies [10]–[23]. A part of these stud-

ies [10 – 14] was motivated by analyzing caloron and dyon signatures of the QCD vacuum,

where for the case of calorons [24] specific signatures of Dirac eigenmodes for different

boundary conditions are known [25]. Another motivation was a possible persistence of the

chiral condensate above Tc [15 – 19], and more recently the temporal fermion boundary

conditions were used to relate observables for chiral symmetry to observables for center

symmetry [20 – 23].

Although the motivations of the studies [10]–[23] are different, one may infer two

common observations which are of interest for the present paper:
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1. Below the critical temperature Tc spectral quantities of the Dirac operator are insen-

sitive to the temporal boundary condition.

2. Above Tc spectral quantities feel the boundary conditions, but only the boundary

angle relative to the phase of the Polyakov loop is relevant.

Let us be a little bit more explicit on the second observation. The temporal fermionic

boundary condition may be parameterized by an angle ϕ ∈ [−π, π) such that it reads

ψ(~x, β) = eiϕ ψ(~x, 0) . (2.1)

In this equation β denotes the extent of the Euclidean time direction, i.e., the inverse

temperature (in lattice units). It is obvious, that the choice ϕ = π gives rise to the usual

anti-periodic boundary conditions. Here, however, we allow for more general boundary

conditions and use the angle ϕ as a free parameter to probe the system.

The second relevant angle in the above listed observation is the phase θP of the (space-

averaged) Polyakov loop

P =
1

V3

∑

~x

Tr

β
∏

x4=1

U4(~x, x4) . (2.2)

In the quenched theory below Tc the expectation value of P vanishes, while above the

transition a non-vanishing expectation value emerges. For the case of the gauge group

SU(N), the values for the Polyakov loop phases θP scatter around the phases of the center

ZN of SU(N), i.e., θP ∼ n2π/N, n = 0, 1 . . . , N−1. Only for infinite volume the underlying

center symmetry of the theory becomes broken and the Polyakov loop assumes a fixed

phase θP of one of the center values. These properties of P are illustrated in the lhs. plot

of figure 1 for the case of SU(3), where we show a scatter plot of the Polyakov loop values

in the complex plane for two ensembles below and above Tc. It is obvious that above Tc the

phases scatter around the values 0, 2π/3 and 4π/3. The subsets of configurations where the

Polyakov loop assumes a single one of the possible phases will be referred to as Polyakov

loop sectors. In particular we will call the set of configurations where the Polyakov loop is

essentially real, i.e., θP ∼ 0, the real Polyakov loop sector.

The second observation from the list above can now be formulated precisely: Only the

sum σ of the boundary angle ϕ and the phase θP of the Polyakov loop,

σ = ϕ + θP mod 2π , (2.3)

is relevant for spectral observables of the Dirac operator. In other words, the change of

observables found when switching from one center sector of the Polyakov loop to another

one can be compensated by shifting the fermionic boundary conditions. This has been

observed [10]–[23] in the gauge groups SU(2) and SU(3) for a wide range of quantities,

ranging from the spectral gap to localization properties of zero and near-zero modes.

In its most compact form the results for the spectrum may be written down as a

generalization [21] of the well known Banks-Casher formula [26]. This formula relates the

chiral condensate 〈ψψ〉 to the density ρ(0) of the Dirac eigenvalues at the origin,

〈ψψ〉σ = −π ρ(0)σ . (2.4)
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Figure 1: Scatter plots of the Polyakov loop P in the complex plane for gauge configurations below

and above Tc. The lhs. plot is for gauge group SU(3), while the rhs. shows the case of G2.

We attach the subscript σ to denote the total angle, consisting of the Polyakov loop phase

and the boundary angle used for the evaluation of the two sides.

Below Tc the spectrum extends all the way to the origin and a non-vanishing ρ(0)

exists which is independent of σ. Thus 〈ψψ〉 6= 0 and chiral symmetry is broken. Above Tc

a gap is expected to open up in the spectrum such that ρ(0) vanishes and chiral symmetry

is restored (〈ψψ〉 = 0).

The interesting observation is that for a zero total angle σ = 0 a non-vanishing density

of eigenvalues ρ(0) and thus a non-zero chiral condensate persists also above Tc. Such a

zero total angle σ = 0 is, e.g., obtained when periodic boundary conditions (ϕ = 0) are

used in the real Polyakov loop sector (θP = 0). Another possibility for σ = 0 would be

anti-periodic boundary conditions for a Polyakov loop with phase θP = π, which is possible

for gauge group SU(N) with even N . More generally it may be shown [12] that the spectral

gap has a sine-like dependence on σ and thus closes completely at σ = 0.

Having identified the role of the center ZN of the gauge groups SU(N) and the cor-

responding phase sectors of the Polyakov loop for the spectral quantities, an interesting

question comes up: How do spectral quantities, and thus the chiral condensate below and

above Tc, behave when the gauge group has a trivial center, i.e., the center consists of only

the identity element, as is the case for the group G2? And how do the fermionic temporal

boundary conditions influence the Dirac spectrum in this case?

Before we address these questions in the next sections, we conclude with remarking

that also for the case of G2 the finite temperature transition is signaled by a changing

expectation value of the Polyakov loop [5]. Below Tc this expectation value is zero, while

at Tc it jumps in a first order transition1 to a non-vanishing value. This behavior is

illustrated in the rhs. plot of figure 1 (see also figure 2 below), where we again show scatter

plots of the Polyakov loop values below and above Tc, now for gauge group G2. What is

1This transition should not be confused with the bulk transition [5, 6] at a lower inverse coupling,

β = 9.45, which is, however, irrelevant for all considerations here.
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immediately obvious is the fact that the Polyakov values are real, due to the existence of

real representations of G2.

Furthermore, above Tc no non-trivial phase structure appears. However, in the infinite

volume limit the Polyakov loop in both phases will necessarily vanish, since there is no

asymptotic string tension [5]. The phase transition is nonetheless physical, as it is manifest

also in the free energy [5, 7].

3. The setting of our calculation

3.1 Technicalities

For our simulations we used the standard Wilson action with the links in a fundamental,

but complex, 7-dimensional representation [5, 6].

For our analysis we use quenched G2 configurations at finite temperatures below and

above the critical temperature. We worked with different lattice sizes ranging from 83×4 to

143 × 6, and β values between 9.45 and 10. All results we show are for lattice size 123 × 6.

The configurations are generated with a hybrid heat-bath [5, 6] and overrelaxation [8]

algorithm. Details can be found in [8]. We always made several independent runs to

reduce autocorrelation effects, with no more than ten configurations per run generated for

fermionic observables. We allowed for 280 to 340 thermalization sweeps and between 28 to

34 decorrelation sweeps between consecutive measurements.

For scale setting we use the string tension determined from Wilson loops2 [9]. In some

of our plots we use units of GeV for illustration purposes. These were introduced by using

for the G2 string tension the value known for SU(3) (σ = (0.44 GeV)2). Note that since even

quenched G2 Yang-Mills theory does not exhibit an asymptotic linear rising potential, the

intermediate distance string-tension has been used to fix the scale. Intermediate distance

is here the distance where Casimir scaling of the string tension is observed [9]. At larger

distances the potential flattens out in quenched G2, while it becomes N -ality scaling in

SU(N) Yang-Mills theory. Note that this is nonetheless equivalent to the procedure to set

the scale in full QCD, as also there in the Casimir-region the scale is fixed. The critical

coupling βc, and thus temperature Tc, was taken from [7], but we also observed them by

Polyakov-loop and plaquette observables, reproducing the results of [7].

The fermionic observables computed from complete Dirac operator spectra were eval-

uated on typically 40 configurations at each temperature. The error bars we show are

statistical errors determined from single elimination Jackknife.

For the analysis of the fermionic variables we use the staggered lattice Dirac operator

Dxy =
4

∑

µ=1

ηµ(x)

2a

[

Uµ(x)δx+µ̂,y − Uµ(x−µ̂)†δx−µ̂,y

]

, (3.1)

with the staggered sign function ηµ(x) = (−1)x1+ ...+xµ−1 . The coordinates x, y run over

all sites of the 4-dimensional L3 ×N4 lattice. The gauge link variables Uµ(x) are elements

2We thank Ludovit Liptak for providing us with his results, partly unpublished, of a high precision

determination of the scale.
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Figure 2: Expectation value of the Polyakov loop as function of temperature.

of the gauge group G2. The staggered Dirac operator is an anti-Hermitian matrix and

has its eigenvalues on the imaginary axis. We evaluate complete spectra using a parallel

implementation of standard LAPACK routines. For each ensemble the complete spectra

where computed for several different fermionic temporal boundary conditions (2.1). These

are most simply implemented by attaching the phase to the last temporal link of the lattice.

All the fermionic observables which we discuss below (eigenvalue density, chiral condensate,

spectral gap and the dual chiral condensate) may be computed from the spectra at the

different boundary conditions.

3.2 Gluonic observables

For illustration purposes we briefly discuss the results for the Polyakov loop. In partic-

ular the plot of the Polyakov loop as a function of the temperature will later be useful

for comparison when we present our results for fermionic observables as a function of

the temperature.

In figure 2 we show our results for the Polyakov loop as a function of the temperature

on a 123 × 6 lattice. The plot clearly shows a steep rise of the expectation value of the

Polyakov loop at the critical temperature Tc.

The transition at the critical temperature is known to be of first order [5, 7]. This is also

clearly seen in our ensembles as is demonstrated in figure 3, where we show for the 123 × 6

lattice histograms of the Polyakov loop at T < Tc (lhs. plot), T = Tc (center) and T > Tc

(rhs. plot). The double peak structure in the center plot clearly shows the coexistence

of two phases at the critical temperature, thus indicating the first order transition. This

result can also be deduced from the free energy [7].

This similarity of gluonic observables for G2 and SU(N) gauge theories was discussed

previously in the context of confinement [4, 27], and it was conjectured that gluonic ob-

servables should coincide qualitatively in both cases [27].
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Figure 3: Histograms for the values of the Polyakov loop P . We compare three temperatures

below (lhs. plot), at (center) and above Tc (rhs. plot). Similar observations have been made in [5].

4. Dirac spectra and fermionic observables

4.1 Spectral density at the origin and the chiral condensate

As we have discussed above, the eigenvalue density of the Dirac operator near the origin

is related to the chiral condensate via the Banks-Casher relation (2.4). For the case of

SU(N) gauge theories we know that the spectrum behaves differently for different boundary

conditions. In particular for the gauge ensemble restricted to configurations with Polyakov

loop in the real sector, the density vanishes above Tc for all boundary conditions, except

for the case where the fermionic boundary condition in time direction is chosen periodic.

For the other sectors of the Polyakov loop, the condensate persists for accordingly shifted

boundary angles ϕ = 2π(N − 1)/N,ϕ = 2π(N − 2)/N . . . .

For the gauge group G2 the Polyakov loop is always real and in order to test if this

case is similar to SU(N) we need to compare periodic and anti-periodic temporal fermion

boundary conditions. In figure 4 we show histograms of the eigenvalues near the origin

for several temperatures below and above Tc. The top panel of plots is for anti-periodic

boundary conditions, while at the bottom we show the periodic case.

For the anti-periodic case we find that below Tc the eigenvalue density extends all the

way to the origin. At Tc it starts to drop and vanishes above the critical temperature.

For the periodic boundary conditions the situation is different, and the density at the

origin survives also above Tc. The histograms clearly demonstrate that the spectral density

behaves similar to what was found for SU(N) when the real Polyakov loop sector is selected.

Since the spectral density at the origin and the chiral condensate 〈ψψ〉 are linked

through the Banks-Casher formula (2.4), it is natural to now study the condensate as a

function of the temperature for periodic and anti-periodic boundary conditions.

In our analysis of the condensate we compared two different ways for its determina-

tion. First we computed 〈ψψ〉 from the density near the origin as determined from the

histograms. Our second determination was based on a direct evaluation of the condensate

– 7 –
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Figure 4: Distribution of the Dirac eigenvalues λ as a function of |λ|. We show the distribution

for several values of the temperature below and above Tc and compare anti-periodic (top panel) to

periodic (bottom) boundary conditions.

0.00 0.05 0.10 0.15 0.20
am

0.0

0.5

1.0

1.5

2.0

- 
a3 <

ψ
 ψ

>
m

spectral sum
π ρ(0)

0.00 0.05 0.10 0.15 0.20
am

0.0

0.5

1.0

1.5

2.0

- 
a3 <

ψ
 ψ

>
m

T = 0.8 Tc T = 1.11 Tc

Figure 5: The condensate 〈ψψ〉m as a function of the quark mass (dashed curve) compared

to the result for the chiral condensate as obtained from the spectral density method (symbols).

All quantities are in lattice units and were obtained on our 123 × 4 configurations. We compare

T = 0.8Tc (lhs. plot) to T = 1.11Tc (rhs. plot).

at a finite fermion mass m, which is computed as a spectral sum of the Dirac eigenvalues λi:

〈ψψ〉m = −
1

V

∑

i

1

λi +m
. (4.1)

The proper chiral condensate is obtained by performing the limit m→ 0 after the infinite
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Figure 6: The chiral condensate as a function of the temperature. We compare the results for

anti-periodic temporal boundary conditions to the case of periodic boundary conditions.

volume limit V → ∞ is taken. On a finite volume, as one is restricted to in a numeri-

cal analysis, the condensate must vanish exactly, as no spontaneous symmetry breaking

is possible in a finite system. This is clearly seen in our data for 〈ψψ〉m which vanish

for very small m. However, before vanishing completely, 〈ψψ〉m shows a long and pro-

nounced shoulder which may be extrapolated to vanishing mass. Comparing the results

from this extrapolation to the determination from the spectral density we always found

the discrepancies to be in the one percent range, showing that the two methods give the

same result.

We demonstrate this agreement explicitly in figure 5, where we show the result from

the spectral sum (4.1) as a function of the mass parameter (dashed curve) and compare it to

the outcome from the spectral density method (symbol). We show the results for T = 0.8Tc

where the condensate is finite (lhs. plot) and for T = 1.11Tc (rhs.) where the condensate

vanishes (using anti-periodic temporal boundary conditions in both cases). The lhs. plot

shows the described shoulder-type behavior, before it drops to zero at vanishing mass.

Just before this drop we observe a small spike which is due to isolated small eigenmodes

on individual configurations — an observation we made for some of our ensembles. When

one ignores this spike and extrapolates the shoulder to vanishing quark mass, one ends up

exactly on the spectral density result indicated by the symbol. On the rhs. plot no shoulder

is observed and the condensate directly extrapolates to zero in agreement with the spectral

method for that case.

The results for the chiral condensate as a function of the temperature are shown in

figure 6, where we again compare periodic and anti-periodic boundary conditions. As

was already suggested by the histograms in figure 4, only the anti-periodic case shows a

restoration of chiral symmetry, i.e., a condensate that vanishes above Tc. For the periodic

case, where the boundary condition is in phase with the Polyakov loop, we see that the

condensate persists also above Tc. Again we find the same picture as for SU(N) gauge

theory in the real Polyakov loop sector.
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Figure 7: The spectral gap as a function of the temperature. We compare the results for anti-

periodic temporal boundary conditions to the case of periodic boundary conditions.

Let us finally stress that the fact that the condensate for anti-periodic boundary con-

ditions drops at the same critical temperature Tc where also the Polyakov loop and the

free energy indicate the transition (compare figure 2), is in itself a remarkable finding. One

cannot a priori expect that this is the case, as is known from the example of SU(3) with

quarks in the adjoint representation [3]. On the other hand it was shown in [20]–[23] that

with the help of boundary conditions the chiral condensate may be transformed into a

generalized Polyakov loop. This transformation suggests a strong link between chiral sym-

metry and confinement, although the exception of adjoint quarks coupled to SU(3) gluons

(and likely for SU(N)) still needs to be understood in this connection. In particular, it

would be highly interesting to investigate whether for adjoint G2 quarks the transitions

would also be distinct and thus would be a general feature of the adjoint representation,

or whether this is specific to adjoint SU(N) fermions.

4.2 The spectral gap

Having obtained the behavior of the chiral condensate let us now look at the spectral

gap, i.e., the average size 〈|λmin|〉 of the smallest eigenvalue λmin. Below Tc the density of

eigenvalues extends all the way to the origin, which on a finite lattice gives rise to only

a microscopic gap, which is a finite size effect that may be described by random matrix

theory. At Tc a macroscopic gap opens up in the spectrum, such that the density at the

origin and thus the condensate vanish. However, as discussed, for SU(N) the size of the

gap depends on the total angle of Polyakov loop and boundary phase.

In figure 7 we now analyze the spectral gap, i.e., 〈|λmin|〉, as a function of the temper-

ature, comparing periodic and anti-periodic boundary conditions. The plot demonstrates

very clearly that the gap opens up only when the anti-periodic boundary conditions are

used. For the periodic case, it remains closed. Since the Polyakov loop is real, the vanishing

gap for periodic boundary conditions obeys the σ = 0 criterion of eq. (2.3). Thus also in

this respect the gap behaves like in the case of SU(N).
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different temperatures.

To complete the analysis of the spectral gap, in figure 8 we plot it as a function of the

boundary angle ϕ, comparing three temperatures. Below Tc the gap is essentially zero, and

the remaining microscopic gap shows no ϕ-dependence within error bars. At Tc a slight

sine-like behavior becomes visible, which becomes considerably more pronounced above Tc.

Using anti-periodic boundary conditions, i.e., ϕ = π, one picks up the value of the gap at

maximal opening. As is seen in figure 7, this maximal gap grows monotonically over the

range of temperatures which we studied above Tc. For periodic boundary conditions, i.e.,

ϕ = 0 ≡ 2π, the gap is closed. We stress that this closing is not just visible for the smallest

eigenvalue which defines the gap, but as is obvious from the histograms in figure 4, also

the higher eigenvalues come closer to zero. Thus indeed a finite spectral density and thus

a non-vanishing condensate are found above Tc for periodic boundary conditions, as was

already demonstrated in figure 6.

4.3 The dual chiral condensate

We finally come to an observable which is based on the non-trivial dependence of spectral

quantities above Tc on the fermionic boundary condition, the recently proposed [21] dual

chiral condensate Σ1. It is obtained as a Fourier transform of the usual chiral condensate

with respect to the boundary angle,

Σ1 = −
1

2π

∫ π

−π

dϕ e−iϕ〈ψ ψ〉ϕ =
1

2π

∫ π

−π

dϕ e−iϕ 1

V

∑

i

1

m+ λ
(i)
ϕ

. (4.2)

In the second step of this equation we have written the chiral condensate as a spectral sum

over all eigenvalues λ
(i)
ϕ of the lattice Dirac operator, computed for boundary angle ϕ. The

mass term is still displayed in this sum, which may be sent to zero after the infinite volume

limit is taken. On a finite lattice one of the procedures which we have discussed for the

usual chiral condensate has to be applied.
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Figure 9: The integrand of the dual chiral condensate at am = 0.1 as a function of the boundary

angle ϕ. We compare the situation below and above Tc.

The original motivation for the dual chiral condensate was the idea of constructing

an observable which connects the chiral condensate with properties of the Polyakov loop,

which in pure SU(N) gauge theory is an order parameter for the breaking of the center

symmetry. The Fourier transform with respect to the boundary angle selects from the

closed fermion loops which the chiral condensate consists of, those which have a winding

number of one. It is obvious that these loops must transform under center transformations

in the same way as the Polyakov loop. An important advantage of the dressed Polyakov

loop over the single thin Polyakov loop are its simple renormalization properties which are

inherited from the chiral condensate. The Fourier transform allows one to switch between

an observable for chiral symmetry breaking to an observable for center symmetry with a

simple renormalization.

It is obvious from the definition (4.2) that the dual chiral condensate can have a non-

vanishing value only when the integrand I(ϕ) = V −1
∑

i(m + λ
(i)
ϕ )−1 has a non-trivial

dependence on the boundary angle ϕ. In figure 9 we show the integrand I(ϕ) below and

above Tc. Below Tc it is independent of ϕ such that we expect a vanishing Σ1 in the

deconfined phase. Above Tc a cosine-like behavior is seen, and the dual chiral condensate

is essentially the amplitude of this cosine. It is important to stress that the modulation of

I(ϕ) is not due to the movement of a single eigenvalue, but due to a collective response of

the IR part of the spectrum to the changing boundary angle ϕ [21, 23].

In figure 10 we show the results for the dual chiral condensate in physical units and

compare it to the behavior of the thin Polyakov loop in lattice units. In the case of a

group with non-trivial center both these observables would test for the breaking of center

symmetry. Thus in this case qualitatively they should behave the same, i.e., vanish below

Tc and have a finite value above Tc.
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Figure 10: The dual chiral condensate at am = 0.1 (large squares) and the expectation value of

the thin Polyakov loop (small circles) as a function of the temperature.

The same behavior is observed also for the case of the center-trivial group G2, as is

obvious from the figure.3 For G2 there is however no simple interpretation in terms of

the breaking of the center symmetry - as is the case for the Polyakov loop. It is again

remarkable that also Σ1, which tests for the collective behavior of the IR spectrum as a

function of boundary conditions, behaves in the same way as one finds for SU(3).

5. Concluding remarks

In this article we have analyzed the chiral condensate and spectral properties of the lat-

tice Dirac operator for the center-trivial gauge group G2. The study was conducted for

quenched gauge configurations at various temperatures below and above Tc. Variating

temporal fermionic boundary conditions were used to probe the system. Of particular in-

terest were the behavior of the chiral condensate and the spectral gap above Tc for various

boundary conditions.

We have demonstrated that chiral symmetry is indeed spontaneously broken. Fur-

thermore, using anti-periodic boundary conditions one finds that the chiral condensate

vanishes at exactly the same temperature Tc where also a thermodynamic transition in the

free energy is observed, and which also leaves its trace in the Polyakov loop. In this re-

spect the G2 gauge theory behaves in the same way as full QCD with fundamental quarks.

In addition, we showed that at Tc a gap opens up in the spectrum as expected from the

Banks-Casher formula.

As one switches to periodic boundary conditions the picture changes. The chiral

condensate remains finite above Tc and no gap appears. This is the same behavior as is

found for gauge group SU(N) if the sector with real Polyakov loop is chosen. The other

3We stress that the fact that the data for Σ1 fall on top of the Polyakov loop values is a mere coincidence,

since the latter are given in lattice units, and also are subject to large renormalization effects.
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sectors show the same behavior after the fermion boundary conditions are transformed with

a center element of SU(N). Above Tc the spectral gap shows the characteristic sine-type

dependence on the boundary angle known from SU(N). Finally also the recently proposed

dual chiral condensate, which is obtained through a Fourier transformation of the usual

condensate with respect to the fermion boundary condition, shows the same behavior as

expected from SU(N).

Thus we have found that for all spectral and chiral observables which we inspected,

the case of gauge group G2 behaves in exactly the same way as the gauge group SU(N)

when the sector with real Polyakov loop is selected. This is a natural outcome, since the

Polyakov loop is always real in G2. These results further support the picture that for chiral

properties of a theory the sector of the Polyakov loop only acts as a background field with

a rather trivial role: For G2 only a single sector exists and for SU(N) the results from

the different sectors may be mapped onto each other by a suitable transformation of the

fermion boundary conditions.

An interesting open puzzle concerning the underlying microscopic mechanism remains:

In several papers [2] it was argued that center vortices play a non-trivial role also for the

breaking of chiral symmetry. Our finding that in many respects the center-trivial gauge

group G2 produces the same chiral pattern as the real Polyakov loop sector of SU(N) thus

should be understood also from a microscopic point of view. In this respect the proposed

domain structure of the G2 vacuum may be of relevance [6]. This would imply that not

the center charge plays a significant role for infrared dynamics, but only the existence of

long range structures, as has already been conjectured for gluonic properties [8].
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